Abstract
Usually, the order of active disturbance rejection control (ADRC) is equal to the relative order of the plant. To improve the control performance, a robust reduced-order method for ADRC is investigated in this paper. Firstly, frequency domain analysis shows that the lower-order extended state observer (ESO) has a smaller disturbance estimation error, so disturbance attenuation capability can be improved by reducing the order of ADRC. However, using only reduced-order ADRC will worsen the robustness of closed-loop systems. Therefore, a robust ADRC method based on a modified noise reduction disturbance observer (MNRDOB) is proposed. The main role of the MNRDOB is to improve the control performance of the closed-loop system by modifying the structure of the controlled object. In addition, the robust stability of the closed-loop control system based on the MNRDOB is discussed. Moreover, some simulations are used to demonstrate the robustness and noise suppression effects of the compound control method reduced-order ADRC with MNRDOB, and the parameter tuning method for the MNRDOB to improve the robustness of the system is given. Finally, some experiments on speed control of a one-dimensional gimbal are performed, and the results show that the proposed method is excellent in overshoot, tracking accuracy, and disturbance attenuation.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献