Robust Reduced-Order Active Disturbance Rejection Control Method: A Case Study on Speed Control of a One-Dimensional Gimbal

Author:

Wang FanORCID,Liu Peng,Xie Meilin,Jing Feng,Liu Bo,Cao Yu,Ma Caiwen

Abstract

Usually, the order of active disturbance rejection control (ADRC) is equal to the relative order of the plant. To improve the control performance, a robust reduced-order method for ADRC is investigated in this paper. Firstly, frequency domain analysis shows that the lower-order extended state observer (ESO) has a smaller disturbance estimation error, so disturbance attenuation capability can be improved by reducing the order of ADRC. However, using only reduced-order ADRC will worsen the robustness of closed-loop systems. Therefore, a robust ADRC method based on a modified noise reduction disturbance observer (MNRDOB) is proposed. The main role of the MNRDOB is to improve the control performance of the closed-loop system by modifying the structure of the controlled object. In addition, the robust stability of the closed-loop control system based on the MNRDOB is discussed. Moreover, some simulations are used to demonstrate the robustness and noise suppression effects of the compound control method reduced-order ADRC with MNRDOB, and the parameter tuning method for the MNRDOB to improve the robustness of the system is given. Finally, some experiments on speed control of a one-dimensional gimbal are performed, and the results show that the proposed method is excellent in overshoot, tracking accuracy, and disturbance attenuation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference33 articles.

1. Hardware Implementation of an ADRC Controller on a Gimbal Mechanism;Behzad;IEEE Trans. Control Syst. Technol.,2018

2. Active disturbance rejection controller and its applications;Han;Control. Decis.,1998

3. From PID to Active Disturbance Rejection Control

4. Scaling and bandwidth-parameterization based controller tuning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3