On the Benefits of Using Object-Oriented Programming for the Objective Evaluation of Vehicle Dynamic Performance in Concurrent Simulations

Author:

Perrelli MicheleORCID,Cosco FrancescoORCID,Carbone GiuseppeORCID,Lenzo BasilioORCID,Mundo DomenicoORCID

Abstract

Assessing passenger cars’ dynamic performance is a critical aspect for car industries, due to its impact on the overall vehicle safety evaluation and the subjective nature of the involved handling and comfort metrics. Accordingly, ISO standards, such as ISO 4138 and ISO 3888, define several specific driving tests to assess vehicle dynamics performance objectively. Consequently, proper evaluation of the dynamic behaviour requires measuring several physical quantities, including accelerations, speed, and linear and angular displacements obtained after instrumenting a vehicle with multiple sensors. This experimental activity is highly demanding in terms of hardware costs, and it is also significantly time-consuming. Several approaches can be considered for reducing vehicle development time. In particular, simulation software can be exploited to predict the approximate behaviour of a vehicle using virtual scenarios. Moreover, motion platforms and detail-scalable numerical vehicle models are widely implemented for the purpose. This paper focuses on a customized simulation environment developed in C++, which exploits the advantages of object-oriented programming. The presented framework strives to perform concurrent simulations of vehicles with different characteristics such as mass, tyres, engine, suspension, and transmission systems. Within the proposed simulation framework, we adopted a hierarchical and modular representation. Vehicles are modelled by a 14 degree-of-freedom (DOF) full-vehicle model, capable of capturing the dynamics and complemented by a set of scalable-detail models for the remaining sub-systems such as tyre, engine, and steering system. Furthermore, this paper proposes the usage of autonomous virtual drivers for a more objective evaluation of vehicle dynamic performances. Moreover, to further evaluate our simulator architecture’s efficiency and assess the achieved level of concurrency, we designed a benchmark able to analyse the scaling of the performances with respect to the number of different vehicles during the same simulation. Finally, the paper reports the proposed simulation environment’s scalability resulting from a set of different and varying driving scenarios.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3