Uncertainty Analysis and Design of Air Suspension Systems for City Buses Based on Neural Network Model and True Probability Density

Author:

Li Cheng1,Jing Yuan1,Ni Jinting1

Affiliation:

1. College of Automobile and Rail, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu 241002, China

Abstract

The accuracy of uncertainty analysis in suspension systems is closely tied to the precision of the probability distribution of sprung mass. Consequently, traditional assumptions regarding the probability distribution fail to guarantee the accuracy of uncertainty analyses results. To achieve more precise uncertainty analysis outcomes, this paper proposes a data-driven approach for analyzing the uncertainties in bus air suspension systems. Firstly, a bus vehicle dynamics model is established to investigate the influence of sprung mass on suspension system performance. Subsequently, a deep neural network model is trained using road test data, for the accurate identification of the sprung mass. The historical mass of the bus is then computed using vehicle network data to obtain the true probability density of the sprung mass. Lastly, the real probability distribution of the sprung mass is utilized to perform uncertainty analysis on the bus suspension system, and the results are compared with those obtained by assuming a probability distribution. Comparative analysis reveals substantial disparities in uncertainty response, with a maximum relative error of 9% observed for wheel dynamic loads, thus emphasizing the significance of precise probability distribution information concerning the sprung mass.

Funder

Excellent Talents Support Program of Anhui Universities

Anhui University Scientific Research Projects

Domestic Visit and Study Project of Outstanding Young Backbone Teachers in Colleges and Universities

The second batch of national level vocational education teachers’ teaching innovation teams

National Teaching Innovation Team for Automobile Manufacturing and Experimental Technology Teachers

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3