Design and Experiment of a Lifting Tool for Hoisting Offshore Single-Pile Foundations

Author:

Zhang BoORCID,Chen Hexuan,Wang Tao,Wang Zhuo

Abstract

Experiments with a cam-type clamp tool were carried out to overcome the difficulty of transporting and installing large-diameter mono-piles for offshore wind turbines. Using the experiments method to design a small wedge-type clamping mechanism and using cam teeth made of 40Cr material resulted in the maximum friction for the mechanism. A single clamping design was created for the cam-type clamp tool to hoist mono-piles for offshore wind turbines. Through force analysis and Automatic Dynamics Analysis of Mechanical System (ADAMS) dynamic simulation of the lifting tool, it was calculated that the clamping force of the lifting tool meets application requirements. A prototype was built in order to carry out an experiment in which the lifting tool hoisted a mono-pile. It was concluded from the experiment that the proposed design of the lifting tool is feasible in practical applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference21 articles.

1. The current state of offshore wind energy technology development

2. Study on a new method for installing a monopile and a fully integrated offshore wind turbine structure

3. A Review on the Structural Analysis of Offshore Vertical Axis Wind Turbine Systems;He;Electr. Power Constr.,2011

4. Vibration Analysis of a Rigid Circular Disk Embedded in a Transversely Isotropic Solid

5. Analysis on the development and present technology status of offshore wind power in China;Ni;Energy Eng.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3