Fertilization Control System Research in Orchard Based on the PSO-BP-PID Control Algorithm

Author:

Wan Chang,Yang Jiawei,Zhou Ling,Wang Shuo,Peng Jie,Tan Yu

Abstract

In order to improve the precision of the variable-rate fertilization system in orchards, this paper conducted a simulation by MATLAB and experimental research based on a variable-rate fertilization experiment platform. The variable-rate fertilization experimental platform was mainly composed of a power supply, DC motors, a PPC-15A1 on-board computer that contains a PCI8932 PC-DAQ, speed sensors, fertilizer dischargers, and a NAV60 module that can receive Beidou Navigation Satellite System positioning data. According to the fertilizer application mechanism of an external grooved wheel fertilizer applicator, the control system model of the variable-rate fertilization driven by the DC motor for orchards was established. A BP neural network adaptive PID controller based on particle swarm optimization (PSO) was proposed to improve the control precision of the system. The step response simulation results by MATLAB show that the overshoot of the BP-PID controller optimized by the PSO algorithm (PSO-BP-PID) is 12.7%, and the adjustment time is 0.557 s. The variable-rate fertilization experiments were conducted, in which the control system was tested by using the PSO-BP-PID controller. The variable fertilizer seeder control system of the Chinese national standard was adopted to evaluate the performance indexes of the system, such as the range of fertilizer amount adjustment, the response time of fertilizer amount adjustment, and the control precision of fertilizer amount. In the variable rate fertilization experiments, the average fertilization errors, respectively, are 1.16% and 1.07%, under the conditions of changing the target fertilization amount and the vehicle speed. The test results are consistent with the simulation results, and the variable-rate fertilization performance parameters are improved.

Funder

Xinjiang Production and Construction Corps in China

Key Laboratory of Modern Agricultural Engineering of Xinjiang Uygur Autonomous Region in China

the First Division of Xinjiang Production and Construction Corps in China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference25 articles.

1. Prescription Map Identification and Position Lag Calibration Method for Variable Rate Application of Fertilizer;Meng;Trans. Chin. Soc. Agric. Mach.,2011

2. Control System of Liquid Fertilizer Variable-Rate Fertilization Based on Beetle Antennae Search Algorithm

3. Nitrogen variable rate fertilization in corn crop prescribed by optical sensor

4. Development and performance evaluation of a control system for variable rate granular fertilizer application

5. Evaluation of Four-element Variable Rate Application of Fertilization Based on Maps;An;Trans. Chin. Soc. Agric. Mach.,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3