Methamphetamine Induces the Release of Proadhesive Extracellular Vesicles and Promotes Syncytia Formation: A Potential Role in HIV-1 Neuropathogenesis

Author:

Chand SubhashORCID,DeMarino Catherine,Gowen Austin,Cowen Maria,Al-Sharif Sarah,Kashanchi FatahORCID,Yelamanchili Sowmya V.ORCID

Abstract

Despite the success of combinational antiretroviral therapy (cART), the high pervasiveness of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) poses a significant challenge for society. Methamphetamine (meth) and related amphetamine compounds, which are potent psychostimulants, are among the most commonly used illicit drugs. Intriguingly, HIV-infected individuals who are meth users have a comparatively higher rate of neuropsychological impairment and exhibit a higher viral load in the brain than infected individuals who do not abuse meth. Effectively, all cell types secrete nano-sized lipid membrane vesicles, referred to as extracellular vesicles (EVs) that can function as intercellular communication to modulate the physiology and pathology of the cells. This study shows that meth treatments on chronically HIV-infected promonocytic U1 cells induce the release of EVs that promote cellular clustering and syncytia formation, a phenomenon that facilitates HIV pathogenesis. Our analysis also revealed that meth exposure increased intercellular adhesion molecule-1 (ICAM-1) and HIV-Nef protein expression in both large (10 K) and small (100 K) EVs. Further, when meth EVs are applied to uninfected naïve monocyte-derived macrophages (MDMs), we saw a significant increase in cell clustering and syncytia formation. Furthermore, treatment of MDMs with antibodies against ICAM-1 and its receptor, lymphocyte function-associated antigen 1 (LFA1), substantially blocked syncytia formation, and consequently reduced the number of multinucleated cells. In summary, our findings reveal that meth exacerbates HIV pathogenesis in the brain through release of proadhesive EVs, promoting syncytia formation and thereby aiding in the progression of HIV infection in uninfected cells.

Funder

National Institute on Drug Abuse

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3