Automated Detection and Diagnosis of Spinal Schwannomas and Meningiomas Using Deep Learning and Magnetic Resonance Imaging

Author:

Ito Sadayuki1,Nakashima Hiroaki1ORCID,Segi Naoki1,Ouchida Jun1,Oda Masahiro2,Yamauchi Ippei1,Oishi Ryotaro1,Miyairi Yuichi1,Mori Kensaku234,Imagama Shiro1

Affiliation:

1. Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan

2. Information Strategy Office, Information and Communications, Nagoya University, Nagoya 464-8601, Japan

3. Department of Intelligent Systems, Nagoya University Graduate School of Informatics, Nagoya 464-8601, Japan

4. Research Center for Medical Bigdata, National Institute of Informatics, Tokyo 101-8430, Japan

Abstract

Spinal cord tumors are infrequently identified spinal diseases that are often difficult to diagnose even with magnetic resonance imaging (MRI) findings. To minimize the probability of overlooking these tumors and improve diagnostic accuracy, an automatic diagnostic system is needed. We aimed to develop an automated system for detecting and diagnosing spinal schwannomas and meningiomas based on deep learning using You Only Look Once (YOLO) version 4 and MRI. In this retrospective diagnostic accuracy study, the data of 50 patients with spinal schwannomas, 45 patients with meningiomas, and 100 control cases were reviewed, respectively. Sagittal T1-weighted (T1W) and T2-weighted (T2W) images were used for object detection, classification, training, and validation. The object detection and diagnosis system was developed using YOLO version 4. The accuracies of the proposed object detections based on T1W, T2W, and T1W + T2W images were 84.8%, 90.3%, and 93.8%, respectively. The accuracies of the object detection for two spine surgeons were 88.9% and 90.1%, respectively. The accuracies of the proposed diagnoses based on T1W, T2W, and T1W + T2W images were 76.4%, 83.3%, and 84.1%, respectively. The accuracies of the diagnosis for two spine surgeons were 77.4% and 76.1%, respectively. We demonstrated an accurate, automated detection and diagnosis of spinal schwannomas and meningiomas using the developed deep learning-based method based on MRI. This system could be valuable in supporting radiological diagnosis of spinal schwannomas and meningioma, with a potential of reducing the radiologist’s overall workload.

Publisher

MDPI AG

Subject

General Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3