Free-Hand MIS TLIF without 3D Navigation—How to Achieve Low Radiation Exposure for Both Surgeon and Patient

Author:

Doria-Medina Roberto1ORCID,Hubbe Ulrich1,Scholz Christoph1,Sircar Ronen1,Brönner Johannes2,Hoedlmoser Herbert2ORCID,Klingler Jan-Helge1

Affiliation:

1. Department of Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany

2. Mirion Technologies (AWST) GmbH, 81739 Munich, Germany

Abstract

Background: Transforaminal lumbar interbody fusion (TLIF) is one of the most frequently performed spinal fusion techniques, and this minimally invasive (MIS) approach has advantages over the traditional open approach. A drawback is the higher radiation exposure for the surgeon when conventional fluoroscopy (2D-fluoroscopy) is used. While computer-assisted navigation (CAN) reduce the surgeon’s radiation exposure, the patient’s exposure is higher. When we investigated 2D-fluoroscopically guided and 3D-navigated MIS TLIF in a randomized controlled trial, we detected low radiation doses for both the surgeon and the patient in the 2D-fluoroscopy group. Therefore, we extended the dataset, and herein, we report the radiation-sparing surgical technique of 2D-fluoroscopy-guided MIS TLIF. Methods: Monosegmental and bisegmental MIS TLIF was performed on 24 patients in adherence to advanced radiation protection principles and a radiation-sparing surgical protocol. Dedicated dosemeters recorded patient and surgeon radiation exposure. For safety assessment, pedicle screw accuracy was graded according to the Gertzbein–Robbins classification. Results: In total, 99 of 102 (97.1%) pedicle screws were correctly positioned (Gertzbein grade A/B). No breach caused neurological symptoms or necessitated revision surgery. The effective radiation dose to the surgeon was 41 ± 12 µSv per segment. Fluoroscopy time was 64 ± 34 s and 75 ± 43 radiographic images per segment were performed. Patient radiation doses at the neck, chest, and umbilical area were 65 ± 40, 123 ± 116, and 823 ± 862 µSv per segment, respectively. Conclusions: Using a dedicated radiation-sparing free-hand technique, 2D-fluoroscopy-guided MIS TLIF is successfully achievable with low radiation exposure to both the surgeon and the patient. With this technique, the maximum annual radiation exposure to the surgeon will not be exceeded, even with workday use.

Funder

The Scientific Society Freiburg

University of Freiburg

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3