Effects of Bone Marrow Sparing and TGF-β3 Treatment in Total Body Irradiation of C57BL/6J Mice

Author:

Hanson Ingunn1ORCID,Vatne Jenny T.1,Edin Nina F. J.1ORCID

Affiliation:

1. Department of Physics, University of Oslo, 0371 Oslo, Norway

Abstract

Introduction: Mortality from acute radiation syndrome is frequently caused by hematopoietic or gastrointestinal radiotoxicity, the latter of which currently has no effective treatment. Transforming growth factor-beta 3 (TGF-β3) may decrease the severity of radiation-induced gastrointestinal damage in mice. In addition, treatment with TGF-β3 may alleviate radiation-induced fibrosis. Objectives: The current study aimed to investigate the effect of TGF-β3 treatment on acute and late radiotoxicity in whole body irradiated mice. Methods: C57BL/6J mice were total body irradiated with 8.5 Gy X-rays with or without shielding of one hind leg to alleviate hematopoietic radiotoxicity. The effects of intravenous TGF-β3 treatment were investigated. Body weight and pain expression were monitored. Intestine, lung, and liver tissues were preserved and analyzed. Alpha smooth muscle actin (α-SMA) expression in MRC-5 cells after 3.5 Gy X-irradiation combined with TGF-β3 treatment was analyzed using flow cytometry. Results: All total body irradiated animals died within ten days after irradiation. Ninety-three percent of femur-shielded mice survived until sampling or termination. No effect of TGF-β3 treatment was observed in either group. No increase in collagen content was detected in the lungs or liver from irradiated mice regardless of TGF-β3 treatment. In vitro, α-SMA expression increased synergistically after irradiation and TGF-β3 treatment. Conclusions: Shielding of the femur during total body irradiation decreased acute gastrointestinal radiation toxicity and increased survival. TGF-β3 treatment did not impact symptoms or survival. TGF-β3 treatment and irradiation increased α-SMA expression in MRC-5 cells synergistically.

Publisher

MDPI AG

Reference92 articles.

1. Radiobiology of the acute radiation syndrome;Rep. Pract. Oncol. Radiother.,2011

2. Hall, E.J., and Giaccia, A.J. (2012). Radiobiology for the Radiologst, Wolters Kluwer Health/Lipincott Williams & Wilkins. [7th ed.].

3. International Atomic Energy Agency (1998). Diagnosis and Treatment of Radiation Injuries, International Atomic Energy Agency.

4. Filgrastim for the treatment of hematopoietic acute radiation syndrome;Farese;Drugs Today,2015

5. Neulasta Regimen for the Hematopoietic Acute Radiation Syndrome: Effects Beyond Neutrophil Recovery;Legesse;Int. J. Radiat. Oncol. Biol. Phys.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3