Impact of Fiber Characteristics on the Interfacial Interaction of Mammalian Cells and Bacteria

Author:

Baby Helna M.1,Joseph John1ORCID,Suresh Maneesha K.1,Biswas Raja1,Menon Deepthy1

Affiliation:

1. Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India

Abstract

An imperative requisite of tissue-engineered scaffolds is to promote host cell regeneration and concomitantly thwart microbial growth. Antibacterial agents are often added to prevent implant-related infections, which, however, aggravates the risk of bacterial resistance. For the first time, we report a fiber-based platform that selectively promotes the growth of mammalian cells and alleviates bacteria by varying fiber size, orientation, and material of polymeric yarns. The interactions of Gram-positive and -negative bacterial species with mammalian mesenchymal stem cells (MSC) were investigated on poly-€-caprolactone (PCL) yarns, polyethylene terephthalate (PET), poly-L-lactic acid (PLLA), and cotton. Various yarn configurations were studied by altering the fiber diameter (from nano- to microscale) and fiber orientations (aligned, twisted, and random) of PCL yarns. PCL nanofibrous yarn decreased the adhesion of S. aureus and E. coli, with a 2.7-fold and 1.5-fold reduction, respectively, compared to PCL microfibrous yarn. Among different fiber orientations, nanoaligned fibers resulted in an 8-fold and 30-fold reduction of S. aureus and E. coli adhesion compared to random fibers. Moreover, aligned orientation was superior in retarding the S. aureus adhesion by 14-fold compared to nanotwisted fibers. Our data demonstrate that polymeric yarns comprising fibers with nanoscale features and aligned orientation promote mammalian cell adhesion and spreading and concomitantly mitigate bacterial interaction. Moreover, we unveil the wicking of cells through polymeric yarns, facilitating early cell adhesion in fibrous scaffolds. Overall, this study provides insight to engineer scaffolds that couple superior interaction of mammalian cells with high-strength fibrous yarns for regenerative applications devoid of antibacterial agents or other surface modification strategies.

Publisher

MDPI AG

Reference53 articles.

1. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications;Zhang;J. Mater. Sci. Mater. Med.,2005

2. Nanostructured Biomaterials for Regeneration;Wei;Adv. Funct. Mater.,2008

3. Nanofibrous Scaffolds for Biomedical Applications;Stocco;Nanoscale,2018

4. Biocompatible and Antimicrobial Multilayer Fibrous Polymeric Wound Dressing with Optimally Embedded Silver Nanoparticles;Sarviya;Appl. Surf. Sci.,2023

5. Meng, S., Wu, H., Xiao, D., Lan, S., and Dong, A. (2023). Carbohydrate Polymers, Elsevier Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3