Effects of Patterned Electromagnetic Fields and Light-Emitting Diodes on Cancer Cells: Impact on Cell Density and Biophoton Emission When Applied Individually vs. Simultaneously

Author:

Ravindran Rahul1,Branigan Kate S.1,Lefebvre Landon M.1,Dotta Blake T.1

Affiliation:

1. Behavioural Neuroscience & Biology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada

Abstract

It has been previously reported that time-varying EMFs and LEDs have the potential to modulate cellular activity and cell viability. It has also been shown that cellular activity and state can be inferred by measuring the biophoton emission derived from these same cells. To identify if the brief application (15 min) of an LED (635 nm at 3 klx) or EMF (1–3 uT) could influence cell growth and subsequent biophoton emission characteristics, B16-BL6 cells were grown to confluence and exposed to a time-varying, frequency-modulated EMF, LED, or both. Before and after EMF and LED exposure, photon emission measurements were taken for 1 min at a 50 Hz sampling rate. Following the exposure and photon emission measurements, cell viability was assessed via the use of a hemocytometer. The results demonstrated that after only 15 min of exposure to a time-varying EMF, there was a 41.6% reduction in viable cells when compared to sham controls [t(25) = 2.4, p = 0.02]. This effect approached significance in the LED alone condition [p = 0.07] but was completely absent in the condition wherein the LED and EMF were applied simultaneously [p < 0.8]. Additionally, following exposure to only the LED, there was a significant increase in biophoton emission SPD values at 13 Hz from whole cell cultures [t(60) = 2.3, p = 0.021]. This biophoton emission frequency was also strongly correlated with the number of nonviable cells [r = −0.514] in the dish. Taken together, these data point to biophotons emitted from cell cultures at 13 Hz as a potential indicator of the number of nonviable cells in vitro. The summation of data here corroborates previous work demonstrating the efficacy of specific time-varying EMFs as a novel therapeutic for the inhibition of cancer cell growth. It also furthers our assertion that biophoton emission can be used as a novel detection tool for cell activity.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3