Biostimulant Effect of Commercial Rhizobacteria Formulation on the Growth of Vitis vinifera L.: Case of Optimal and Water Deficit Conditions

Author:

Papantzikos Vasileios1ORCID,Papanikou Areti1,Stournaras Vasileios1,Mpeza Paraskevi1ORCID,Mantzoukas Spiridon1ORCID,Patakioutas Georgios1

Affiliation:

1. Department of Agriculture, Arta Campus, University of Ioannina, 47100 Arta, Greece

Abstract

As climate change is an imminent threat to the environment and agriculture, there is an increasing need to find immediate solutions capable of compensating for water deficits even in semi-arid conditions. This study is focused on the evaluation of the vegetative growth of grapevine plants Vitis vinifera L., of the Greek variety “Debina” in a water deficit environment, with the application of two bacterial-based formulations: one with Bacillus amyloliquefaciens (strain QST 713) and one with Sinorhizobium meliloti (strain cepa B2352). The two formulations were tested under rational irrigation (100% of Available Water) and deficit irrigation (57% of AW). After 140 days, plant growth parameters, such as total plant growth length, leaf area, roots, shoots, and leaves dry biomass showed better performance on treatments with plant growth-promoting rhizobacteria (PGPR) formulations under either rational or deficit irrigation conditions. In addition, the metabolic response of the grapevine plants to the deficit irrigation stress, such as the total chlorophyll, leaf relative water, total phenolic, and proline content, proved to be enriched on the treatments with PGPR formulations during this experiment. The two formulations, in conditions of abiotic stress, achieved to almost compensate for the irrigation deficit, boosting the plant metabolism. This study reveals the need for further research on PGPR biostimulants, as this first trial of these formulations on grapevine could be significant in the case of water scarcity and climate change.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3