Spatial-Coherent Dynamics and Climatic Signals in the Radial Growth of Siberian Stone Pine (Pinus sibirica Du Tour) in Subalpine Stands along the Western Sayan Mountains

Author:

Zhirnova Dina F.,Belokopytova Liliana V.ORCID,Krutovsky Konstantin V.ORCID,Kholdaenko Yulia A.,Babushkina Elena A.ORCID,Vaganov Eugene A.

Abstract

Siberian stone pine (Pinus sibirica Du Tour) is one of the keystone conifers in Siberian taiga, but its radial growth is complacent and thus rarely investigated. We studied its growth in subalpine stands near the upper timberline along the Western Sayan Mountains, Southern Siberia, because climatic responses of trees growing on the boundaries of species distribution help us better understand their performance and prospects under climate change. We performed dendroclimatic analysis for six tree-ring width chronologies with significant between-site correlations at distances up to 270 km (r = 0.57–0.84, p < 0.05). We used ERA-20C (European Reanalysis of the Twentieth Century) daily climatic series to reveal weak but spatially coherent responses of tree growth to temperature and precipitation. Temperature stably stimulated growth during the period from the previous July–August to current August, except for an adverse effect in April. Precipitation suppressed growth during periods from the previous July–September to December (with reaction gradually strengthening) and from the current April to August (weakening), while the snowfall impact in January–March was neutral or positive. Weather extremes probably caused formation of wide tree rings in 1968 and 2002, but narrow rings in 1938, 1947, 1967, 1988, and 1997. A subtle increase in the climatic sensitivity of mature trees was observed for all significant seasonal climatic variables except for the temperature in the previous October–January. The current winter warming trend is supposedly advantageous for young pine trees based on their climatic response and observed elevational advance.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3