Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates

Author:

Almonacid-Olleros Guillermo,Almonacid GabinoORCID,Gil DavidORCID,Medina-Quero JavierORCID

Abstract

New trends of Machine learning models are able to nowcast power generation overtaking the formulation-based standards. In this work, the capabilities of deep learning to predict energy generation over three different areas and deployments in the world are discussed. To this end, transfer learning from deep learning models to nowcast output power generation in photovoltaic systems is analyzed. First, data from three photovoltaic systems in different regions of Spain, Italy and India are unified under a common segmentation stage. Next, pretrained and non-pretrained models are evaluated in the same and different regions to analyze the transfer of knowledge between different deployments and areas. The use of pretrained models provides encouraging results which can be optimized with rearward learning of local data, providing more accurate models.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3