Stability Analysis of Continuous Stochastic Linear Model

Author:

Du JunORCID,Jia BinORCID,Zheng Shiteng

Abstract

Many scholars have conducted research on the traffic oscillations and reproduced the growth pattern by establishing stochastic models and simulations. However, the growth pattern of oscillations caused by uncertainty have not been thoroughly studied. Recently, a frequency domain stability analysis method was proposed to analyze the discrete stochastic model. This paper extends this analysis to a continuous situation based on frequency domain tools (e.g., Laplace transform) by introducing a continuous bandlimited white noise. The analytical expression for the evolution of speed standard deviation has been derived. Our study of a homogeneous case reveals an interesting phenomenon: when |G(ω)|∞<1, the speed variance will converge to a constant value, which only depends on the self-disturbance of vehicles. The simulation results verified that the continuous models and corresponding discrete model tend to be consistent when the discrete time step tends to the infinitesimal. Overall, this paper makes up for the deficiency of previous studies on continuous oscillations in car-following theory and can potentially be used to develop new control strategies to help dampen traffic oscillations.

Funder

National Natural Science Foundation of China

Research Foundation of the state key Laboratory of Rail Traffic Control and Safety

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Based Random Forest Algorithm Modification for Detecting Monkeypox Disease;2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE);2023-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3