Harmonic Superspace Approach to the Effective Action in Six-Dimensional Supersymmetric Gauge Theories

Author:

Buchbinder Ioseph,Ivanov Evgeny,Merzlikin Boris,Stepanyantz KonstantinORCID

Abstract

We review the recent progress in studying the quantum structure of 6 D , N = ( 1 , 0 ) , and N = ( 1 , 1 ) supersymmetric gauge theories formulated through unconstrained harmonic superfields. The harmonic superfield approach allows one to carry out the quantization and calculations of the quantum corrections in a manifestly N = ( 1 , 0 ) supersymmetric way. The quantum effective action is constructed with the help of the background field method that secures the manifest gauge invariance of the results. Although the theories under consideration are not renormalizable, the extended supersymmetry essentially improves the ultraviolet behavior of the lowest-order loops. The N = ( 1 , 1 ) supersymmetric Yang–Mills theory turns out to be finite in the one-loop approximation in the minimal gauge. Furthermore, some two-loop divergences are shown to be absent in this theory. Analysis of the divergences is performed both in terms of harmonic supergraphs and by the manifestly gauge covariant superfield proper-time method. The finite one-loop leading low-energy effective action is calculated and analyzed. Furthermore, in the Abelian case, we discuss the gauge dependence of the quantum corrections and present its precise form for the one-loop divergent part of the effective action.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3