Detecting Phase Transitions through Non-Equilibrium Work Fluctuations

Author:

Colangeli Matteo1ORCID,Di Francesco Antonio1ORCID,Rondoni Lamberto23ORCID

Affiliation:

1. Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy

2. Department of Mathematical Sciences “Giuseppe Luigi Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

3. National Institute for Nuclear Physics, Sezione di Torino, Via Pietro Giuria 1, 10125 Turin, Italy

Abstract

We show how averages of exponential functions of path-dependent quantities, such as those of Work Fluctuation Theorems, detect phase transitions in deterministic and stochastic systems. State space truncation—the restriction of the observations to a subset of state space with prescribed probability—is introduced to obtain that result. Two stochastic processes undergoing first-order phase transitions are analyzed both analytically and numerically: a variant of the Ehrenfest urn model and the 2D Ising model subject to a magnetic field. In the presence of phase transitions, we prove that even minimal state space truncation makes averages of exponentials of path-dependent variables sensibly deviate from full state space values. Specifically, in the case of discontinuous phase transitions, this approach is strikingly effective in locating the transition value of the control parameter. As this approach works even with variables different from those of fluctuation theorems, it provides a new recipe to identify order parameters in the study of non-equilibrium phase transitions, profiting from the often incomplete statistics that are available.

Funder

Italian Ministry of University and Research

Italian National Group of Mathematical Physics (GNFM) of the Istituto Nazionale di Alta Matematica

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3