Reliability-Centered Preventive Maintenance Optimization for a Single-Component Mechanical Equipment

Author:

Liu Yaojun12,Tang Yuhua3,Wang Ping2,Song Xiaolin1,Wen Meilin45

Affiliation:

1. Wuhu State-Owned Factory of Machining, Wuhu 241000, China

2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210002, China

3. Lunar Exploration and Space Engineering Center (LESEC), Beijing 100097, China

4. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

5. The Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University, Beijing 100191, China

Abstract

Due to the high failure rates of mechanical equipment with complex structures and numerous moving parts, devising an effective preventive maintenance (PM) plan and avoiding the influence brought by failure is crucial. However, some PM efforts are disorganized, unpractical, and unscientific, leading to prolonged downtime and significant cost losses. The challenge in creating PM plans is exacerbated by the asymmetry between maintenance and failure data. Therefore, focusing on single-unit mechanical equipment, the reliability-centered maintenance (RCM) idea is put forward to find out the key parts to implement preventive maintenance, and PM models are built to draw up a more reasonable PM plan. Such strategies aim to lower maintenance costs and enhance economic performance. Data on past maintenance and failures are analyzed to determine the life distribution and maintenance effect functions, helping to quantify the uncertainty caused by data asymmetry. Two PM optimization models considering time-varying failure rates are proposed: one focuses on minimizing costs, while the other aims to maximize availability. A PM plan example is demonstrated using a component from a tire-building machine including six parts, which proves the validity of the models. The availability results of two parts corresponding to the maintenance strategy obtained by the availability maximization model are above 0.99, and the results of total costs per unit time of the remaining four parts obtained by the cost minimization model are under 5.69.

Funder

Stable Supporting Project of Science and Technology on Reliability and Environmental Engineering Laboratory

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3