Exploring Anisotropic Mechanical Characteristics in 3D-Printed Polymer Biocomposites Filled with Waste Vegetal Fibers

Author:

Wang Honggang12,Fu Zhi2,Liu Yu2,Cheng Ping13ORCID,Wang Kui1ORCID,Peng Yong1ORCID

Affiliation:

1. School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China

2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, China

3. Laboratory of Engineering, Computer Science and Imagery (ICUBE), Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67000 Strasbourg, France

Abstract

The fiber-filled polymer composite is one of the best materials which provides a symmetrical superior strength and stiffness to structures. With the strengthening of people’s environmental protection and resource reuse consciousness, the development of renewable materials, especially natural fiber-filled polymer composites, is receiving great attention. This study investigated the mechanical properties of polymer composites incorporating waste materials from the food processing industry and agricultural sources. Waste vegetal fiber-filled polymer biocomposites (WVFFPBs) with varying fiber types and 3D printing orientations were systematically fabricated. Subsequently, the tensile tests were executed to comprehensively assess the anisotropic mechanical behaviors of the WVFFPBs. The results demonstrated that WVFFPBs performed excellent anisotropic mechanical properties compared to pristine matrix samples as print orientation changed. As the printing angle increased from 0° to 90°, the tensile mechanical properties of the WVFFPBs displayed a decreasing trend. Moreover, the print orientation–anisotropic mechanical behavior relationship of 3D-printed WVFFPBs was revealed through the analysis of the material manufacturing characteristics and damage features.

Funder

Hunan Science Foundation for Distinguished Young Scholars of China

the First Batch of 2021 MOE of PRC Industry–University Collaborative Education Program

the China Scholarship Council

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3