A Discrete-Time Queueing Model of a Bottleneck with an Energy-Saving Mechanism Based on Setup and Shutdown Times

Author:

Kempa Wojciech M.1ORCID,Paprocka Iwona2ORCID

Affiliation:

1. Department of Mathematics Applications and Methods for Artificial Intelligence, Faculty of Applied Mathematics, Silesian University of Technology, 23 Kaszubska Str., 44-100 Gliwice, Poland

2. Department of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, 18A Konarskiego Str., 44-100 Gliwice, Poland

Abstract

Producers are encouraged to reduce their energy consumption of manufacturing systems by applying less-energy-intensive modern technologies and advanced machine tools and operating methods at the system level. In the paper, organizational and analytical solutions are combined to model the sustainable production system. Managers can study the behavior of a production system organized using energy-saving rules by changing key parameters of the input model (arrival intensity, bottleneck service rate, buffer size, setup and shutdown time) to analyze the queue size of the production system and therefore performance. A discrete-time queueing model of a single-bottleneck production line with a finite input buffer capacity is proposed. Jobs occur according to a binomial process and are processed individually, one by one, according to the natural FIFO service discipline, with a general discrete-type cumulative distribution function. The total number of jobs present in the system is bounded by a non-random fixed value N. Every time the system becomes empty, an energy-saving mechanism is started: the processing machine (server) is turned off during a geometrically distributed shutdown time. Similarly, the first job arriving into the empty system initializes a geometrically distributed setup time. Identifying renewal moments in the evolution of the model, a system of difference equations is built for the transient queue-size distribution conditioned by the state of the system at the opening. The solution is obtained explicitly in terms of probability-generating functions. In addition, the Drum-Buffer-Rope concept is proposed to reduce the energy consumption of the production line. The throughput of the production system is maximized by adjusting the time between the order arrivals and the size of the input buffer to the capacity of the bottleneck. Turning off a machine under certain conditions and slowing down non-critical machines are strategies to reduce energy consumption. A detailed illustrating numerical and simulation study of the considered model is attached as well, in which the sensitivity of the queue-size behavior to changes of the key input model parameters is investigated.

Funder

Silesian University of Technology

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3