Big Bang Nucleosynthesis Constraints and Indications for Beyond Standard Model Neutrino Physics

Author:

Kirilova Daniela1ORCID,Panayotova Mariana1,Chizhov Emanuil1

Affiliation:

1. Institute of Astronomy and NAO, Bulgarian Academy of Sciences, Tsarigradsko Shosse 72 Blvd., 1784 Sofia, Bulgaria

Abstract

We use Big Bang Nucleosynthesis (BBN) to probe Beyond Standard Model physics in the neutrino sector. Recently, the abundances of primordially produced light elements D and He-4 were determined from observations with better accuracy. The good agreement between the theoretically predicted abundances of primordially produced light elements and those derived from observations allows us to update the BBN constraints on Beyond Standard Model (BSM) physics. We provide numerical analysis of several BSM models of BBN and obtain precise cosmological constraints and indications for new neutrino physics. Namely, we derive more stringent BBN constraints on electron neutrino–sterile neutrino oscillations corresponding to 1% uncertainty of the observational determination of the primordial He-4. The cosmological constraints are obtained both for the zero and non-zero cases of the initial population of the sterile neutrino state. Then, in a degenerate BBN model with neutrino νe↔νs oscillations, we analyze the change in the cosmological constraints in case lepton asymmetry L is big enough to suppress oscillations. We obtain constraints on the lepton asymmetry L. We discuss a possible solution to the dark radiation problem in degenerate BBN models with νe↔νs oscillations in case L is large enough to suppress neutrino oscillations during the BBN epoch. Interestingly, the required value of L for solving the DR problem is close to the value of L indicated by the EMPRESS experiment, and also it is close to the value of lepton asymmetry that is necessary to relax Hubble tension.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3