Challenges for Pulsed Laser Deposition of FeSe Thin Films

Author:

Obata Yukiko,Karateev Igor A.,Pavlov Ivan,Vasiliev Alexander L.,Haindl Silvia

Abstract

Anti-PbO-type FeSe shows an advantageous dependence of its superconducting properties with mechanical strain, which could be utilized as future sensor functionality. Although superconducting FeSe thin films can be grown by various methods, ultrathin films needed in potential sensor applications were only achieved on a few occasions. In pulsed laser deposition, the main challenges can be attributed to such factors as controlling film stoichiometry (i.e., volatile elements during the growth), nucleation, and bonding to the substrate (i.e., film/substrate interface control) and preventing the deterioration of superconducting properties (i.e., by surface oxidization). In the present study, we address various technical issues in thin film growth of FeSe by pulsed laser deposition, which pose constraints in engineering and reduce the application potential for FeSe thin films in sensor devices. The results indicate the need for sophisticated engineering protocols that include interface control and surface protection from chemical deterioration. This work provides important actual limitations for pulsed laser deposition (PLD) of FeSe thin films with the thicknesses below 30 nm.

Funder

WRHI Tokyo Tech

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3