Research on a Cognitive Distraction Recognition Model for Intelligent Driving Systems Based on Real Vehicle Experiments

Author:

Sun Qinyu,Wang Chang,Guo Yingshi,Yuan Wei,Fu Rui

Abstract

The accurate and prompt recognition of a driver’s cognitive distraction state is of great significance to intelligent driving systems (IDSs) and human-autonomous collaboration systems (HACSs). Once the driver’s distraction status has been accurately identified, the IDS or HACS can actively intervene or take control of the vehicle, thereby avoiding the safety hazards caused by distracted driving. However, few studies have considered the time–frequency characteristics of the driving behavior and vehicle status during distracted driving for the establishment of a recognition model. This study seeks to exploit a recognition model of cognitive distraction driving according to the time–frequency analysis of the characteristic parameters. Therefore, an on-road experiment was implemented to measure the relative parameters under both normal and distracted driving via a test vehicle equipped with multiple sensors. Wavelet packet analysis was used to extract the time–frequency characteristics, and 21 pivotal features were determined as the input of the training model. Finally, a bidirectional long short-term memory network (Bi-LSTM) combined with an attention mechanism (Atten-BiLSTM) was proposed and trained. The results indicate that, compared with the support vector machine (SVM) model and the long short-term memory network (LSTM) model, the proposed model achieved the highest recognition accuracy (90.64%) for cognitive distraction under the time window setting of 5 s. The determination of time–frequency characteristic parameters and the more accurate recognition of cognitive distraction driving achieved in this work provide a foundation for human-centered intelligent vehicles.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3