Analysis of Behavior Trajectory Based on Deep Learning in Ammonia Environment for Fish

Author:

Xu WenkaiORCID,Zhu ZhaohuORCID,Ge FengliORCID,Han ZhongzhiORCID,Li JuanORCID

Abstract

Ammonia can be produced by the respiration and excretion of fish during the farming process, which can affect the life of fish. In this paper, to research the behavior of fish under different ammonia concentration and make the corresponding judgment and early warning for the abnormal behavior of fish, the different ammonia environments are simulated by adding the ammonium chloride into the water. Different from the existing methods of directly artificial observation or artificial marking, this paper proposed a recognition and analysis of behavior trajectory approach based on deep learning. Firstly, the three-dimensional spatial trajectories of fish are drawn by three-dimensional reconstruction. Then, the influence of different concentrations of ammonia on fish is analyzed according to the behavior trajectory of fish in different concentrations of ammonia. The results of comparative experiments show that the movement of fish and vitality decrease significantly, and the fish often stagnates in the water of containing ammonium chloride. The proposed approach can provide a new idea for the behavior analysis of animal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3