Efficient Estimation and Inference in the Proportional Odds Model for Survival Data

Author:

Huang Xifen,Xiong Chaosong,Jiang Tao,Lu Junfeng,Xu Jinfeng

Abstract

In modeling time-to-event data with long-term survivors, the proportional hazards model is widely used for its easy and direct interpretation as well as the flexibility to accommodate the past information and allow time-varying predictors. This becomes most relevant when the mortality of individuals converges with time, and the estimation and inference based upon the proportional odds model can often yield more accurate and reasonable results than the classical Cox’s proportional hazards model. Along with the fast development of the data science technologies, computational challenges for survival data with increasing sample size and diverging parameter dimension exist. Currently, existing methods for analyzing such data are computationally inconvenient. In this paper, we propose efficient computational methods for analyzing survival data in the proportional odds model, where the nonparametric maximum likelihood approach is combined with the minorization-maximization (MM) algorithm and the regularization scheme to yield fast and accurate estimation and inferential procedures. The illustration of the methodology using extensive simulation studies and then the application to the Veterans’ Administration lung cancer data is also given.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3