Abstract
Recently, the advanced driver assistance system (ADAS) of autonomous vehicles (AVs) has offered substantial benefits to drivers. Improvement of passenger safety is one of the key factors for evolving AVs. An automated system provided by the ADAS in autonomous vehicles is a salient feature for passenger safety in modern vehicles. With an increasing number of electronic control units and a combination of multiple sensors, there are now sufficient computing aptitudes in the car to support ADAS deployment. An ADAS is composed of various sensors: radio detection and ranging (RADAR), cameras, ultrasonic sensors, and LiDAR. However, continual use of multiple sensors and actuators of the ADAS can lead to failure of AV sensors. Thus, prognostic health management (PHM) of ADAS is important for smooth and continuous operation of AVs. The PHM of AVs has recently been introduced and is still progressing. There is a lack of surveys available related to sensor-based PHM of AVs in the literature. Therefore, the objective of the current study was to identify sensor-based PHM, emphasizing different fault identification and isolation (FDI) techniques with challenges and gaps existing in this field.
Funder
Korea Institute for Advancement of Technology
National Research Foundation of Korea
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献