Abstract
Cooperative perception is an important domain of autonomous driving that helps to improve road safety and traffic efficiency. Nevertheless, the large amount of sensed data and complicated algorithms make storage and computation for autonomous vehicles (AVs) challenging. Furthermore, not every AV needs to individually process all sensed data from other AVs because the environmental information is the same in a small region. Inspired by vehicular edge computing (VEC), where AVs are interconnected with the help of roadside units (RSUs) for better storage and computation capabilities, we propose a VEC-based architecture for cooperative perception and design a key task scheduling algorithm for the above challenges. Specifically, a time slot-based VEC architecture with the help of an RSU is designed, and the task scheduling problem in the proposed architecture is formulated as a multitask multitarget scheduling problem with assignment restrictions. A two-stage heuristic scheme (TSHS) is designed for the problem. Finally, extensive simulations indicate that the proposed architecture with the TSHS can enable cooperative perception, with a fast running speed and advanced performance, that is superior to that of the benchmarks, especially when most AVs face limitations in terms of storage and computation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Yunnan Province of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献