Application of Image Processing and 3D Printing Technique to Development of Computer Tomography System for Automatic Segmentation and Quantitative Analysis of Pulmonary Bronchus

Author:

Kuo Chung Feng JeffreyORCID,Yang Zheng-Xun,Lai Wen-SenORCID,Liu Shao-ChengORCID

Abstract

This study deals with the development of a computer tomography (CT) system for automatic segmentation and quantitative analysis of the pulmonary bronchus. It includes three parts. Part I employed an adaptive median and four neighbors low pass filters to eliminate the noise of CT. Then, k-means clustering was used to segment the lung region in the CT data. In Part II, the pulmonary airway was segmented. The three-grade segmentation was employed to divide all pixels in the lung region into three uncertain grades, including air, blood vessels, and tissues, and uncertain portions. The airway wall was reformed using a border pixel weight mask. Afterwards, the seed was calculated automatically with the front-end image masking the aggregation position of the lung region as the input of the region growing to obtain the initial airway. Afterwards, the micro bronchi with different radii were detected using morphological grayscale reconstruction to modify the initial airway. Part III adopted skeletonization to simplify the pulmonary airway, keeping the length and extension direction information. The information was recorded in a linked list with the world coordinates based on the patients’ carina, defined by the directions of the carina to the top end of the trachea and right and left main bronchi. The whole set of bronchi was recognized by matching the target bronchus direction and world coordinates using hierarchical classification. The proposed system could detect the location of the pulmonary airway and detect 11 generations’ bronchi with a bronchus recognition capability of 98.33%. Meanwhile, 20 airway parameters’ measurement and 3D printing verification have been processed. The diameter, length, volume, angle, and cross-sectional area of the main trachea and the right and left bronchi, the cross-sectional area of the junction, the left bronchus length, and the right bronchus length have been calculated for clinical practice guidelines. The system proposed in this study simultaneously maintained the advantages of automation and high accuracy and contributed to clinical diagnosis.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3