Application of Exponential Temperature Dependent Viscosity Model for Fluid Flow over a Moving or Stationary Slender Surface

Author:

Akbar Saddam Sultan,Mustafa Meraj

Abstract

The problem of laminar flow around a moving thin needle or slender surface with free stream velocity is analyzed when viscosity is supposed to have an exponential temperature dependency. Additionally, the temperature dependence in thermal conductivity is retained. Consideration of variable viscosity and thermal conductivity makes the governing equations coupled and non-linear. A self-similar solution of the problem is achieved, which depends on a parameter θw, which is the quotient of wall and ambient temperatures. A comparison of present findings is made with those of inversely linear temperature-dependent viscosity and constant viscosity cases. The size of the needle plays an important part in enhancing thermal boundary layer thickness. The expressions of skin friction coefficient and local Nusselt number in case of exponential temperature dependent viscosity are just derived in this study. An important observation is that computational results are qualitatively like those noticed for the case of inversely linear temperature dependency.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3