Artificial Neuron-Based Model for a Hybrid Real-Time System: Induction Motor Case Study

Author:

Capel Manuel I.ORCID

Abstract

Automatic Machine Learning (AML) methods are currently considered of great interest for use in the development of cyber-physical systems. However, in practice, they present serious application problems with respect to fitness computation, overfitting, lack of scalability, and the need for an enormous amount of time for the computation of neural network hyperparameters. In this work, we have experimentally investigated the impact of continuous updating and validation of the hyperparameters, on the performance of a cyber-physical model, with four estimators based on feedforward and narx ANNs, all with the gradient descent-based optimization technique. The main objective is to demonstrate that the optimized values of the hyperparameters can be validated by simulation with MATLAB/Simulink following a mixed approach based on interleaving the updates of their values with a classical training of the ANNs without affecting their efficiency and automaticity of the proposed method. For the two relevant variables of an Induction Motor (IM), two sets of estimators have been trained from the input current and voltage data. In contrast, the training data for the speed and output electromagnetic torque of the IM have been established with the help of a new Simulink model developed entirely. The results have demonstrated the effectiveness of ANN estimators obtained with the Deep Learning Toolbox (DLT) that we used to transform the trained ANNs into blocks that can be directly used in cyber-physical models designed with Simulink.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3