The Geometry of the Kiepert Trefoil

Author:

Pulov Vladimir I.ORCID,Toda Magdalena D.ORCID,Vassilev Vassil M.ORCID,Mladenov Ivaïlo M.ORCID

Abstract

This article presents a comparative study of Kiepert’s trefoil and its related curves, combining a variety of tools from differential and algebraic geometry, integrable systems, elastica theory, and special functions. While this curve was classically known and well studied in the literature, some related open problems were recently solved, and the goal of this paper is to present and characterize the general solution of the equation that governs this trefoil’s family of curves by involving elliptic functions and elastica theory in the mechanics.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference21 articles.

1. The Trefoil Soliton

2. Modern Differential Geometry of Curves and Surfaces with Mathematica®;Gray,2006

3. Handbook and Atlas of Plane Curves;Shikin,1995

4. Le Jardin des Courbes;Khelif,2010

5. Plane Algebraic Curves;Brieskorn,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3