Author:
Han Xilian,Li Chao,Ma Hongqiang
Abstract
This paper proposed an experimental test: the solar water-heating system was been monitored for a whole year to analyze collector performance in an actual operation process. Heat-collecting efficiency, heating capacity, power consumption, and heat required were analyzed theoretically. Results showed that solar irradiance and ambient temperature were positively correlated with heat collection efficiency, and the daily average heat collection efficiency was up to 56.63%. In winter, the auxiliary heat source consumed the most power, almost all of which bears the heat of users. The heat collection in summer met the demand for hot water, and the guarantee rate of solar energy could reach 100%. The energy saving properties and CO2 emission reduction were analyzed. This system had a significant effect on the energy-saving effect and environmental protection. The analysis showed that the hot-water system can fully meet the design requirements under the condition of relatively sufficient solar energy, and can operate stably, which has a certain guiding significance for the design and application of large-scale solar hot-water systems.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献