Optimization Design of Centrifugal Pump Flow Control System Based on Adaptive Control

Author:

Wang YuqinORCID,Zhang Haodong,Han Zhibo,Ni Xiaoqiang

Abstract

In this paper, in order to improve the control characteristics of the centrifugal pump flow control system, a mathematical model of the centrifugal pump flow control system was established based on an analysis of the basic structures, such as the frequency converter, motor, and centrifugal pump. Based on the adaptive control theory, the recursive least squares algorithm with a forgetting factor was used to estimate the real-time parameters of the centrifugal pump control system, and the self-tuning PID control method was used to optimize the mathematical model of the centrifugal pump flow control system. The simulation results showed that the adjustment time of the optimized system was shortened by 16.58%, and the maximum overshoot was reduced by 83.90%, which improved the rapidity and stability of the transient response of the system. This showed that adaptive control had a significant effect on improving the robustness and anti-interference ability of the centrifugal pump control system. In order to further verify the accuracy of the self-tuning PID control method, a flow adaptive control system test platform was built. The test results showed that under the conditions of constant frequency and variable frequency, the actual flow rate of the centrifugal pump was always kept near the set flow rate, the error was small, and it had better real-time followability. The research results showed that adaptive control could revise the parameters in real-time according to changes to the centrifugal pump control system, which improved the stability and robustness of the system. Therefore, adaptive PID control could effectively improve the adaptability of centrifugal pumps to various complex working conditions and improve the working efficiency of centrifugal pumps.

Funder

Anhui Province University Discipline (Professional) Top Talent Academic Funding Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference24 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of the Automatically Adjusting Pressure Regulator Parameters System in Electric Centrifugal Pump Installation;2024 XXVII International Conference on Soft Computing and Measurements (SCM);2024-05-22

2. Modeling of dynamic modes of a generalized pumping station with an asynchronous electric drive of centrifugal pumps;Reporter of the Priazovskyi State Technical University. Section: Technical sciences;2023-12-28

3. MATHEMATICAL MODELING OF MULTI-UNITS PUMPING STATION WITH ASYNCHRONOUS ELECTRIC DRIVE OF CENTRIFUGAL PUMPS;Advances in Electrical and Electronic Engineering;2023-09-28

4. Assessing the energy efficiency of irrigation pump systems;Agricultural Science and Technology;2023-09

5. Birleşik Tanklı Su Sayacı Test Sisteminde Geribeslemeli Doğrusallaştırma Tabanlı Santrifüj Pompa Akış Hızı Kontrolü;European Journal of Science and Technology;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3