Towards Real-Time Heartbeat Classification: Evaluation of Nonlinear Morphological Features and Voting Method

Author:

Kandala Rajesh N V P SORCID,Dhuli Ravindra,Pławiak PawełORCID,Naik Ganesh R.ORCID,Moeinzadeh HosseinORCID,Gargiulo Gaetano D.ORCID,Gunnam Suryanarayana

Abstract

Abnormal heart rhythms are one of the significant health concerns worldwide. The current state-of-the-art to recognize and classify abnormal heartbeats is manually performed by visual inspection by an expert practitioner. This is not just a tedious task; it is also error prone and, because it is performed, post-recordings may add unnecessary delay to the care. The real key to the fight to cardiac diseases is real-time detection that triggers prompt action. The biggest hurdle to real-time detection is represented by the rare occurrences of abnormal heartbeats and even more are some rare typologies that are not fully represented in signal datasets; the latter is what makes it difficult for doctors and algorithms to recognize them. This work presents an automated heartbeat classification based on nonlinear morphological features and a voting scheme suitable for rare heartbeat morphologies. Although the algorithm is designed and tested on a computer, it is intended ultimately to run on a portable i.e., field-programmable gate array (FPGA) devices. Our algorithm tested on Massachusetts Institute of Technology- Beth Israel Hospital(MIT-BIH) database as per Association for the Advancement of Medical Instrumentation(AAMI) recommendations. The simulation results show the superiority of the proposed method, especially in predicting minority groups: the fusion and unknown classes with 90.4% and 100%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3