Forecasting Groundwater Level for Soil Landslide Based on a Dynamic Model and Landslide Evolution Pattern

Author:

Duan GonghaoORCID,Chen Deng,Niu Ruiqing

Abstract

The occurrence and migration of groundwater is a key natural factor that directly affects the stability of landslides, and rainfall has a large effect on the groundwater level in soil landslides. This study used the Baijiabao landslide in the Three Georges area of China as the research subject and used a combination of more than seven years of rainfall and GPS (Global Positioning System) monitoring data from 2007 to 2013. We applied the K-means clustering method to classify one cycle of the evolution stage into three classes based on the relative displacement of the main sliding surface of the landslide. To illustrate the relationship between the three landslide evolution divisions and the dynamic indicators, we identified rainfall factors that correspond to the actual change in the landslide using the minimal description length principle method. Based on the relationship between the actual deformation stage of the landslide and the rainfall factor from historical monitoring, the mean absolute error of the dynamic exponential smoothing model was 0.053, and the correlation coefficient was 0.929. The size of the smoothness index could be modified in real-time to achieve dynamic correction, which indicates that the model exhibited high reliability and confirmed the usefulness of the proposed model for forecasting groundwater level changes based on deep-seated soil landslide type.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3