Person-Specific Gaze Estimation from Low-Quality Webcam Images

Author:

Ansari Mohd Faizan1ORCID,Kasprowski Pawel1ORCID,Peer Peter2ORCID

Affiliation:

1. Department of Applied Informatics, Silesian University of Technology, 44-100 Gliwice, Poland

2. Faculty of Computer and Information Science, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia

Abstract

Gaze estimation is an established research problem in computer vision. It has various applications in real life, from human–computer interactions to health care and virtual reality, making it more viable for the research community. Due to the significant success of deep learning techniques in other computer vision tasks—for example, image classification, object detection, object segmentation, and object tracking—deep learning-based gaze estimation has also received more attention in recent years. This paper uses a convolutional neural network (CNN) for person-specific gaze estimation. The person-specific gaze estimation utilizes a single model trained for one individual user, contrary to the commonly-used generalized models trained on multiple people’s data. We utilized only low-quality images directly collected from a standard desktop webcam, so our method can be applied to any computer system equipped with such a camera without additional hardware requirements. First, we used the web camera to collect a dataset of face and eye images. Then, we tested different combinations of CNN parameters, including the learning and dropout rates. Our findings show that building a person-specific eye-tracking model produces better results with a selection of good hyperparameters when compared to universal models that are trained on multiple users’ data. In particular, we achieved the best results for the left eye with 38.20 MAE (Mean Absolute Error) in pixels, the right eye with 36.01 MAE, both eyes combined with 51.18 MAE, and the whole face with 30.09 MAE, which is equivalent to approximately 1.45 degrees for the left eye, 1.37 degrees for the right eye, 1.98 degrees for both eyes combined, and 1.14 degrees for full-face images.

Funder

Department of Applied Informatics, Silesian University of Technology

Slovenian Research Agency ARRS through the Research Programme P2–0214

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3