Effect of Torrefaction on the Physiochemical Properties of White Spruce Sawdust for Biofuel Production

Author:

Onyenwoke Chukwuka1ORCID,Tabil Lope G.1ORCID,Mupondwa Edmund12,Cree Duncan3ORCID,Adapa Phani4

Affiliation:

1. Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada

2. Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada

3. Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada

4. National Hydrology Research Centre, Global Institute for Water Security (GIWS), University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada

Abstract

Torrefaction pretreatment is a mild form of pyrolysis that has the potential to produce a high-quality raw material for making biofuel that serves as a replacement for coal in the bioenergy industry. Microwave-assisted torrefaction was conducted on white spruce sawdust (WSS) at temperatures of 200 °C, 250 °C, and 300 °C and retention times of 5 min, 7 min, and 9 min in an inert environment. The torrefaction process produces a solid carbon, commonly known as biochar, and condensable (torrefaction liquid (TL)) and non-condensable gases. In this study, torrefaction characteristics were investigated to observe its effects on the thermal and physiochemical properties of the pellets produced. During the torrefaction process, a significant mass loss associated with the decomposition of hemicellulose was observed. The hemicellulose content drastically reduced to approximately 1.8% and the cellulose content was reduced by approximately 10%, while the lignin gained approximately 35% as the severity increased. This led to an improvement in the higher heating value (HHV), hydrophobicity, bulk, particle density, pellet dimensional stability, and pellet density. However, the pellet tensile strength decreased as the torrefaction severity increased. Pellet tensile strength is a critical indicator of biomass pellets that expresses the force required to crush or damage a pellet. Therefore, to enhance the tensile strength of the pellets, the introduction of a binder was necessary. Torrefaction liquid and sawdust were used as additives at different proportions during pelletization. The addition of binders (torrefaction liquid and sawdust) to the pellet formulation increased the tensile strength of the torrefied WSS by approximately 50%. The OH groups in the biomass break down to a limited degree due to dehydration. This hinders the formation of H bonds, thereby increasing the chances that the pretreated biomass will become hydrophobic. The SEM graphs showed that the torrefied WSS pellets demonstrated more firmly glued surfaces with fewer pores spaces when set side by side with the raw pellets. The thermogravimetric analysis conducted showed that the torrefaction of WSS slightly reduced its thermal stability.

Funder

Natural Sciences and Engineering Council of Canada

Biofuel Network

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3