Abstract
IoT devices can be deployed almost anywhere, but they usually need to be connected to other IoT devices, either through the Internet or local area networks. For such communications, many IoT devices make use of wireless communications, whose coverage is key: if no coverage is available, an IoT device becomes isolated. This can happen both indoors (e.g., large buildings, industrial warehouses) or outdoors (e.g., rural areas, cities). To tackle such an issue, opportunistic networks can be useful, since they use gateways to provide services to IoT devices when they are in range (i.e., IoT devices take the opportunity of having a nearby gateway to exchange data or to use a computing service). Moreover, opportunistic networks can provide Edge Computing capabilities, thus creating Opportunistic Edge Computing (OEC) systems, which deploy smart gateways able to perform certain tasks faster than a remote Cloud. This article presents a novel decentralized OEC system based on Bluetooth 5 IoT nodes whose latency is evaluated to determine the feasibility of using it in practical applications. The obtained results indicate that, for the selected scenario, the average end-to-end latency is relatively low (736 ms), but it is impacted by factors such as the location of the bootstrap node, the smart gateway hardware or the use of high-security mechanisms.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference56 articles.
1. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (In Billions). 2022.
2. Can Blockchain Strengthen the Internet of Things?;Kshetri;IT Prof.,2017
3. Fraga-Lamas, P., Lopes, S.I., and Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors, 2021. 21.
4. Froiz-Míguez, I., Lopez-Iturri, P., Fraga-Lamas, P., Celaya-Echarri, M., Blanco-Novoa, Ó., Azpilicueta, L., Falcone, F., and Fernández-Caramés, T.M. Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes. Sensors, 2020. 20.
5. Parked Vehicle Edge Computing: Exploiting Opportunistic Resources for Distributed Mobile Applications;Huang;IEEE Access,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献