Effect of Microbial Degradation Treatments on Lignocellulose, Cellulose, and Water-Holding Capacity of Four Typical Forest Fuels from Northeast China

Author:

Yang Guang1,Li Baozhong1,Liu Xinye1,Wang Lixuan1,Zhang Yunlin2ORCID,Ning Jibin1,Zhao Fengjun3,Wang Mingyu3,Yu Hongzhou1ORCID

Affiliation:

1. Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northern Forest Fire Management Key Laboratory of State Forestry and Grassland Administration, College of Forestry, Northeast Forestry University, Harbin 150040, China

2. School of Biological Science, Guizhou Education University, Guiyang 550018, China

3. Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Since forest fuel decomposes slowly and increases the risk of forest fires by accumulating over the years, forest fuel management to accelerate the decomposition process is essential to prevent forest fires and protect forest resources. In this study, we conducted experiments on forest fuels (Pinus sylvestris var. mongholica, Larix gmelinii, Quercus mongolica and Fraxinus mandshurica) in four typical plantation forests in northeast China by adding Trichoderma spp. to investigate the decomposition process and the changes in cellulose, hemicellulose and the water-holding capacity of the fuels. The addition of Trichoderma spp. accelerated the decomposition of cellulose, hemicellulose and lignin in the fuel. Trichoderma spp. promoted the ratio of water absorption and loss, as well as the water-holding capacity of the fuels. The ratio of water absorption and loss reached equilibrium when the decomposition time was up to 35 days, and the addition of Trichoderma spp. increased the maximal water-holding capacity of the fuel. The residual ratio of the four types of fuel degraded by the different treatments was inversely proportional to their maximal water-holding capacities and to the residual ratios of cellulose, hemicellulose and lignin. The residual ratios of degradation of the four fuels under different treatments were linearly related to their maximum water-holding capacity, cellulose, hemicellulose and lignin residual ratios. Trichoderma spp. had a positive effect on the degradation effect and water-holding capacity of fuel on the ground surface of four typical plantation forests. The study is of positive significance for the decomposition of fuel in forests, it promotes the development of biological fire prevention technology and provides a basis for the reinforcement of the management of fuel in forests and the protection of forest resources.

Funder

National Forestry and Grassland Administration Project for the Open Competition Mechanism to Select the Best Candidates

National Natural Science Foundation of China

Fundamental Research Funds for Chinese Academy of Forestry

Postdoctoral Fellowship Program of China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3