Experimental Analysis of Ceiling Temperature Distribution in Sloped Integrated Common Services Tunnels

Author:

Li Linjie12ORCID,Wu Guang1,Wu Zhaoguo3,Huang Huixian4,Zhang Haibing3,Gao Zihe5

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. State Grid Chongqing Electric Power Research Institute, Chongqing 401123, China

4. State Grid Chongqing Electric Power Company, Chongqing 400015, China

5. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

In this study, a 1/10 reduced-scale model tunnel with one end closed was constructed to investigate maximum temperature profiles beneath the tunnel ceiling during fire events. By varying the heat release rates (HRRs) and tunnel slopes (0%, 2%, 5%, and 6%) and measuring horizontal temperatures longitudinally along the tunnel ceiling, the effects of these parameters were systematically examined. The findings reveal that the distribution of maximum temperatures within a one-end-closed tunnel can be categorized into three distinct regions: far-field, transition, and near-field regions. Notably, milder tunnel slopes correspond to an elevated maximum temperature beneath the ceiling. By employing dimensional analysis, two prediction models were formulated to forecast maximum temperatures beneath the ceiling for fire sources located in the far-field and near-field regions, respectively. These predictive models were validated against experimental data, demonstrating favorable agreement. This study enhances our understanding of the impact of tunnel slope on temperature distribution during fire events in one-end-closed tunnels. Furthermore, the prediction models developed offer practical tools for assessing and mitigating fire risks in such tunnel configurations.

Funder

National Natural Science Foundation of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Excellent Youth Foundation of Henan Scientific Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3