Natural Flame Retardant Minerals for Advanced Epoxy Composites

Author:

Lei Yu1,Zhao Xueyi2,Xu Lulu3,Li Hongyang1,Liang Jing1,Yeoh Guan Heng1ORCID,Wang Wei1ORCID

Affiliation:

1. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia

2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Nowadays, with the approaching carbon neutrality deadlines and the implementation of zero-net carbon emission policies, the research and development of flame retardants are increasingly influenced by stringent regulations and laws. In this context, natural inorganic materials have garnered significant attention as promising flame retardants to enhance the fire resistance of polymer composites. These materials offer unique advantages, such as being environmentally friendly, cost-effective, and producing no carbon emissions during preparation. Consequently, in recent years, there has been a rapid increase in research on natural mineral flame retardants. This review systematically introduces the research progress on natural minerals as flame retardants in epoxy resin, highlighting their ability to provide exceptional fire resistance. Additionally, we categorize the various chemical modification approaches for natural minerals and explore different various natural mineral-based flame retardants. Furthermore, we elucidate the flame retardant mechanisms behind both natural and modified mineral flame retardant systems. Beyond summarizing and concluding the current state of research, we also project future research directions and identify challenges in the development of natural mineral flame retardants.

Funder

Australian Research Council/Discovery Early Career Researcher Award

ARC Research Hub for Fire Resilience Infrastructure, Assets, and Safety Advancements (FRIASA) in Urban, Resources, Energy, and Renewables Sectors

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3