Recently Developed Adsorbing Materials for Fluoride Removal from Water and Fluoride Analytical Determination Techniques: A Review

Author:

Tolkou Athanasia K.ORCID,Manousi NataliaORCID,Zachariadis George A.ORCID,Katsoyiannis Ioannis A.,Deliyanni Eleni A.ORCID

Abstract

In recent years, there has been an increase in public perception of the detrimental side-effects of fluoride to human health due to its effects on teeth and bones. Today, there is a plethora of techniques available for the removal of fluoride from drinking water. Among them, adsorption is a very prospective method because of its handy operation, cost efficiency, and high selectivity. Along with efforts to assist fluoride removal from drinking waters, extensive attention has been also paid to the accurate measurement of fluoride in water. Currently, the analytical methods that are used for fluoride determination can be classified into chromatographic methods (e.g., ionic chromatography), electrochemical methods (e.g., voltammetry, potentiometry, and polarography), spectroscopic methods (e.g., molecular absorption spectrometry), microfluidic analysis (e.g., flow injection analysis and sequential injection analysis), titration, and sensors. In this review article, we discuss the available techniques and the ongoing effort for achieving enhanced fluoride removal by applying novel adsorbents such as carbon-based materials (i.e., activated carbon, graphene oxide, and carbon nanotubes) and nanostructured materials, combining metals and their oxides or hydroxides as well as natural materials. Emphasis has been given to the use of lanthanum (La) in the modification of materials, both activated carbon and hybrid materials (i.e., La/Mg/Si-AC, La/MA, LaFeO3 NPs), and in the use of MgO nanostructures, which are found to exhibit an adsorption capacity of up to 29,131 mg g−1. The existing analytical methodologies and the current trends in analytical chemistry for fluoride determination in drinking water are also discussed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3