Breast Cancer Detection with Quanvolutional Neural Networks

Author:

Matondo-Mvula Nadine1ORCID,Elleithy Khaled1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Abstract

Quantum machine learning holds the potential to revolutionize cancer treatment and diagnostic imaging by uncovering complex patterns beyond the reach of classical methods. This study explores the effectiveness of quantum convolutional layers in classifying ultrasound breast images for cancer detection. By encoding classical data into quantum states through angle embedding and employing a robustly entangled 9-qubit circuit design with an SU(4) gate, we developed a Quantum Convolutional Neural Network (QCNN) and compared it to a classical CNN of similar architecture. Our QCNN model, leveraging two quantum circuits as convolutional layers, achieved an impressive peak training accuracy of 76.66% and a validation accuracy of 87.17% at a learning rate of 1 × 10−2. In contrast, the classical CNN model attained a training accuracy of 77.52% and a validation accuracy of 83.33%. These compelling results highlight the potential of quantum circuits to serve as effective convolutional layers for feature extraction in image classification, especially with small datasets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3