Understanding Higher-Order Interactions in Information Space

Author:

Edelsbrunner Herbert1,Ölsböck Katharina1,Wagner Hubert2

Affiliation:

1. ISTA (Institute of Science and Technology Austria), 3400 Klosterneuburg, Austria

2. Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Abstract

Methods used in topological data analysis naturally capture higher-order interactions in point cloud data embedded in a metric space. This methodology was recently extended to data living in an information space, by which we mean a space measured with an information theoretical distance. One such setting is a finite collection of discrete probability distributions embedded in the probability simplex measured with the relative entropy (Kullback–Leibler divergence). More generally, one can work with a Bregman divergence parameterized by a different notion of entropy. While theoretical algorithms exist for this setup, there is a paucity of implementations for exploring and comparing geometric-topological properties of various information spaces. The interest of this work is therefore twofold. First, we propose the first robust algorithms and software for geometric and topological data analysis in information space. Perhaps surprisingly, despite working with Bregman divergences, our design reuses robust libraries for the Euclidean case. Second, using the new software, we take the first steps towards understanding the geometric-topological structure of these spaces. In particular, we compare them with the more familiar spaces equipped with the Euclidean and Fisher metrics.

Publisher

MDPI AG

Reference42 articles.

1. On information and sufficiency;Kullback;Ann. Math. Stat.,1951

2. A mathematical theory of communication;Shannon;Bell Syst. Tech. J.,1948

3. Amari, S.I., and Nagaoka, H. (2000). Methods of Information Geometry, American Mathematical Society.

4. Information and Accuracy Attainable in Estimation of Statistical Parameters;Rao;Bull. Calcutta Math. Soc.,1945

5. On the Mathematical Foundations of Theoretical Statistics;Fisher;Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character,1922

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3