Vectorization of Floor Plans Based on EdgeGAN

Author:

Dong Shuai,Wang Wei,Li Wensheng,Zou Kun

Abstract

A 2D floor plan (FP) often contains structural, decorative, and functional elements and annotations. Vectorization of floor plans (VFP) is an object detection task that involves the localization and recognition of different structural primitives in 2D FPs. The detection results can be used to generate 3D models directly. The conventional pipeline of VFP often consists of a series of carefully designed complex algorithms with insufficient generalization ability and suffer from low computing speed. Considering the VFP is not suitable for deep learning-based object detection frameworks, this paper proposed a new VFP framework to solve this problem based on a generative adversarial network (GAN). First, a private dataset called ZSCVFP is established. Unlike current public datasets that only own not more than 5000 black and white samples, ZSCVFP contains 10,800 colorful samples disturbed by decorative textures in different styles. Second, a new edge-extracting GAN (EdgeGAN) is designed for the new task by formulating the VFP task as an image translation task innovatively that involves the projection of the original 2D FPs into a primitive space. The output of EdgeGAN is a primitive feature map, each channel of which only contains one category of the detected primitives in the form of lines. A self-supervising term is introduced to the generative loss of EdgeGAN to ensure the quality of generated images. EdgeGAN is faster than the conventional and object-detection-framework-based pipeline with minimal performance loss. Lastly, two inspection modules that are also suitable for conventional pipelines are proposed to check the connectivity and consistency of PFM based on the subspace connective graph (SCG). The first module contains four criteria that correspond to the sufficient conditions of a fully connected graph. The second module that classifies the category of all subspaces via one single graph neural network (GNN) should be consistent with the text annotations in the original FP (if available). The reason is that GNN treats the adjacent matrix of SCG as weights directly. Thus, GNN can utilize the global layout information and achieve higher accuracy than other common classifying methods. Experimental results are given to illustrate the efficiency of the proposed EdgeGAN and inspection approaches.

Funder

Guangdong Basic and Applied Basic Research Projects

Publisher

MDPI AG

Subject

Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3