A Comprehensive Survey on Machine Learning Techniques for Android Malware Detection

Author:

Kouliaridis VasileiosORCID,Kambourakis GeorgiosORCID

Abstract

Year after year, mobile malware attacks grow in both sophistication and diffusion. As the open source Android platform continues to dominate the market, malware writers consider it as their preferred target. Almost strictly, state-of-the-art mobile malware detection solutions in the literature capitalize on machine learning to detect pieces of malware. Nevertheless, our findings clearly indicate that the majority of existing works utilize different metrics and models and employ diverse datasets and classification features stemming from disparate analysis techniques, i.e., static, dynamic, or hybrid. This complicates the cross-comparison of the various proposed detection schemes and may also raise doubts about the derived results. To address this problem, spanning a period of the last seven years, this work attempts to schematize the so far ML-powered malware detection approaches and techniques by organizing them under four axes, namely, the age of the selected dataset, the analysis type used, the employed ML techniques, and the chosen performance metrics. Moreover, based on these axes, we introduce a converging scheme which can guide future Android malware detection techniques and provide a solid baseline to machine learning practices in this field.

Publisher

MDPI AG

Subject

Information Systems

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight deep learning-based android malware detection framework;Expert Systems with Applications;2024-12

2. A Formal Concept Analysis approach to hierarchical description of malware threats;Forensic Science International: Digital Investigation;2024-09

3. ANDROID MALWARE CLASSIFICATION USING BASIC MACHINE LEARNING METHODS;Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi;2024-08-31

4. Behavioral based detection of android ransomware using machine learning techniques;International Journal of System Assurance Engineering and Management;2024-07-24

5. DETECTION OF ANDROID MALWARE USING DEEP LEARNING ENSEMBLE WITH CHEETAH-OPTIMIZED FEATURE SELECTION;Advances and Applications in Discrete Mathematics;2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3