Abstract
High moisture content is a recurrent problem in masonry and can jeopardize durability. Therefore, precise and easy-to-use techniques are welcome both to evaluate the state of conservation and to help in the diagnosis of moisture-related problems. In this research, the humidification and drying process of two wall specimens were assessed by infrared thermography and the results were compared with two traditional techniques: surface moisture meter and the gravimetric method. Two climatic chambers were used to impose different ambience conditions to each specimen, to evaluate the impact of air temperature and relative humidity in the results. The qualitative analysis of the thermal images allowed the identification of the phenomena. The quantitative analysis showed that the order of magnitude of the temperature gradient that translates high humidity levels is substantially different in the two chambers, pointing to the influence of the surrounding environment. The presented analysis contributes to identifying the criteria indicative of moisture-related problems in two different scenarios and discusses the correlation between the non-destructive techniques and the moisture content in the masonry walls. The limitations and future research gaps regarding the use of IRT to assess moisture are also highlighted.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献