Predicting Differences in Model Parameters with Individual Parameter Contribution Regression Using the R Package ipcr

Author:

Arnold ManuelORCID,Brandmaier Andreas M.ORCID,Voelkle Manuel C.ORCID

Abstract

Unmodeled differences between individuals or groups can bias parameter estimates and may lead to false-positive or false-negative findings. Such instances of heterogeneity can often be detected and predicted with additional covariates. However, predicting differences with covariates can be challenging or even infeasible, depending on the modeling framework and type of parameter. Here, we demonstrate how the individual parameter contribution (IPC) regression framework, as implemented in the R package ipcr, can be leveraged to predict differences in any parameter across a wide range of parametric models. First and foremost, IPC regression is an exploratory analysis technique to determine if and how the parameters of a fitted model vary as a linear function of covariates. After introducing the theoretical foundation of IPC regression, we use an empirical data set to demonstrate how parameter differences in a structural equation model can be predicted with the ipcr package. Then, we analyze the performance of IPC regression in comparison to alternative methods for modeling parameter heterogeneity in a Monte Carlo simulation.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3