Abstract
This study evaluated the accuracy of tennis-specific stroke and movement event detection algorithms from a cervically mounted wearable sensor containing a triaxial accelerometer, gyroscope and magnetometer. Stroke and movement data from up to eight high-performance tennis players were captured in match-play and movement drills. Prototype algorithms classified stroke (i.e., forehand, backhand, serve) and movement (i.e., “Alert”, “Dynamic”, “Running”, “Low Intensity”) events. Manual coding evaluated stroke actions in three classes (i.e., forehand, backhand and serve), with additional descriptors of spin (e.g., slice). Movement data was classified according to the specific locomotion performed (e.g., lateral shuffling). The algorithm output for strokes were analysed against manual coding via absolute (n) and relative (%) error rates. Coded movements were grouped according to their frequency within the algorithm’s four movement classifications. Highest stroke accuracy was evident for serves (98%), followed by groundstrokes (94%). Backhand slice events showed 74% accuracy, while volleys remained mostly undetected (41–44%). Tennis-specific footwork patterns were predominantly grouped as “Dynamic” (63% of total events), alongside successful linear “Running” classifications (74% of running events). Concurrent stroke and movement data from wearable sensors allows detailed and long-term monitoring of tennis training for coaches and players. Improvements in movement classification sensitivity using tennis-specific language appear warranted.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献