Prototype Machine Learning Algorithms from Wearable Technology to Detect Tennis Stroke and Movement Actions

Author:

Perri ThomasORCID,Reid Machar,Murphy Alistair,Howle Kieran,Duffield RobORCID

Abstract

This study evaluated the accuracy of tennis-specific stroke and movement event detection algorithms from a cervically mounted wearable sensor containing a triaxial accelerometer, gyroscope and magnetometer. Stroke and movement data from up to eight high-performance tennis players were captured in match-play and movement drills. Prototype algorithms classified stroke (i.e., forehand, backhand, serve) and movement (i.e., “Alert”, “Dynamic”, “Running”, “Low Intensity”) events. Manual coding evaluated stroke actions in three classes (i.e., forehand, backhand and serve), with additional descriptors of spin (e.g., slice). Movement data was classified according to the specific locomotion performed (e.g., lateral shuffling). The algorithm output for strokes were analysed against manual coding via absolute (n) and relative (%) error rates. Coded movements were grouped according to their frequency within the algorithm’s four movement classifications. Highest stroke accuracy was evident for serves (98%), followed by groundstrokes (94%). Backhand slice events showed 74% accuracy, while volleys remained mostly undetected (41–44%). Tennis-specific footwork patterns were predominantly grouped as “Dynamic” (63% of total events), alongside successful linear “Running” classifications (74% of running events). Concurrent stroke and movement data from wearable sensors allows detailed and long-term monitoring of tennis training for coaches and players. Improvements in movement classification sensitivity using tennis-specific language appear warranted.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Analysis of the distances covered and technical actions performed by professional tennis players during official matches;J. Sports Sci.,2017

2. External match workloads during the first week of Australian Open tennis competition;Int. J. Sports Physiol. Perform.,2017

3. Monitoring hitting load in tennis using inertial sensors and machine learning;Int. J. Sports Physiol. Perform.,2017

4. Using technology to improve practice and performance: A practical summary;ITF Coach. Sport Sci. Rev.,2018

5. Activity recognition in beach volleyball using a deep convolutional neural network;Data Min. Knowl. Discov.,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3