Abstract
Intelligent data analytics-based cloud computing is a leading trend for managing a large-scale network in contemporary manufacturing environments. The data and information are shared using the cloud environments and valuable knowledge is driven using the embedded intelligence analytics. This research applied this trend to the control of a key supplier’s real-time production planning for solving joint production goals with downstream producers. As a key supplier has several downstream producers in general, several uncertainties are embedded on the supply chain network such as the quality issue in the supplier and the occurrence of unexpected orders from the downstream industries. While the control of a supply plan is difficult considering these dynamics in traditional frameworks, the proposed framework detects the dynamic changes accurately using the constructed cloud system. Moreover, the real-time control considering uncertain scenarios as well as the extracted knowledge is achieved using the provided Industrial Internet of Things (IIoT) and simulation-based control model using stochastic network. To show the effective of the suggested framework, real manufacturing cases and their numerical analyses are provided.
Funder
National Research Foundation of Korea
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献